If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2-882=0
a = 14; b = 0; c = -882;
Δ = b2-4ac
Δ = 02-4·14·(-882)
Δ = 49392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{49392}=\sqrt{7056*7}=\sqrt{7056}*\sqrt{7}=84\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-84\sqrt{7}}{2*14}=\frac{0-84\sqrt{7}}{28} =-\frac{84\sqrt{7}}{28} =-3\sqrt{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+84\sqrt{7}}{2*14}=\frac{0+84\sqrt{7}}{28} =\frac{84\sqrt{7}}{28} =3\sqrt{7} $
| g+1/2g=352 | | 8x^2-7x=7x^2+2 | | (x+3)²=(x+1)(x+7) | | 3-5(a-4)=-12 | | 12=6+x/2 | | (m+2)9= | | 5•4/5x=6• | | –5+3f=8f | | a-32=61 | | 5y5(-6-2y)=O | | (m-13)/3-(4m-29)/7=1 | | 8.3=d+4.7= | | -1/2u-2/7=1/5 | | 6c=24. | | x²+9=x(x+3) | | x-4÷2=10 | | 6x-6=10x+5 | | 3.4x-19.36=-10.22 | | 60x+(6x-5)^2-(601)=0 | | 0.06(d+35)=126.16 | | 60x+(6x-5)^2=601 | | -6–(4x+7)=-2(x+6)–1 | | d+1.06+35=126.16 | | 22/n=44/66 | | 4-w=206 | | 14+0.44x=19+1.69x | | 15-2a=45 | | 0=3x^2-7x+48 | | 5a–20+60+2a–14=180 | | d+0.06d+35=126.16 | | (6x-5)^2+60x=601 | | 3(14r+28)=2(r+2) |